Shanghai Geshe Information Technology Co., Ltd.

Geshe MC Master User Manual

Version 1.0

Contents

1.	Introduction	3
	1.1 About	3
	1.2 Functional Characteristics	3
	1.3 System Requirements	9
	1.4 Product Licensing	10
	1.5 Product Support	10
2.	Quick Start	11
	2.1 Installation	11
	2.2 Login	12
	2.3 User Interface	13
	2.3.1 Main Window	13
	2.3.2 Application Menu	13
	2.3.3 Toolbar	15
	2.3.4 Editor Area	16
	2.4 Create a Data Acquisition and Monitoring Project	19
	2.4.1 Step 1 - New Project	19
	2.4.2 Step 2 - Add Serial Port Device	19
	2.4.3 Step 3 - Add Sequence	21
	2.4.4 Step 4 - Add Variants	24
	2.4.5 Step 5 - Use Scripts to Associate Sequence Data with Variables	26
	2.4.6 Step 6 - Add Schema	29
3.	FAQ	33

2

1. Introduction

1.1 About

Geshe MC Master is an IDE for measurement and control software based on modular technology, which can help users develop automated test and control software system quickly. It can help enterprises to unify and standardize the development and management of test and control software, and reduce the development cost, learning cost and maintenance cost of test and control software.

Geshe MC Master provides a unified environment and interface for all different applications of automated testing and control, and provides a flexible and powerful framework for the development, management and execution of measurement and control systems, thus effectively solving the problems in four key areas:

- > Simplifying and accelerating the development of complex sequences
- > Improving the reusability and maintainability of code and control program
- > Improving the expansibility of measurement and control system
- > Improving the performance of measurement and control system

For any measurement and control project that needs to accelerate development, code reuse, performance improvement and automation, such as data acquisition and monitoring system, design verification system, hardware testing system, chip testing system, etc., Geshe MC Master is indispensable.

1.2 Functional Characteristics

1) Custom Device Interface

With the help of the device adapter built in the software, users can create any combination of devices and interfaces, and can communicate with different devices and interfaces at the same time to meet the needs of various measurement and control connections.

At the same time, the device adapter can also expand new devices and interfaces by plug-ins, such as listening serial port, listening network port and so on, to meet the special connection needs.

New Device			X
General Type			
Serial Port 🕎 TCP Client 🕎 TCP Server			
UDP UDP			
Visa Type			
	_		
OK	С	ancel	

2) Custom variable data

With the built-in variable adapter, users can create variables, variable arrays, variable containers, and also create extended variables, such as expression variables, text file variables, database variables, to meet the needs of data transmission, presentation and storage.

Software built-in variable editor, users can easily create and edit various types of variables.

🗧 BasicVars 🗙	ExtendedVa	rs ×		*	×	🔆 ToolBox	Null
Name	Value Type	Value	Format	De		Search ToolBox	Boolean
👻 📒 BasicVars	Null				•		SByte
Bool1	Boolean	True					Byte
🦪 Int1	Int32	10					Int16
🦪 Int2	Int32	-10					UInt16
🦪 String	1 String	MC Master					Int32
🦪 String	2 String	测控大师					UInt32
🦪 Doubl	e1 Double	10.1					Int64
🦪 Doubl	e2 Double	-10.1					UInt64
🦪 DateT	me1 DateTime	2018/11/11	уууу/			Stroperties	Float
🦪 Decim	al1 Decimal	10.123456				(Name)	Double
🦪 Decim	al2 Decimal	-10.123456				Capacity	Decimal
🦪 BitStri	ng1 BitString	0x1234				Description	DateTime
🦪 BitStri	ng2 BitString	0xFFF				Format	String
🦪 BitStri	ng3 BitString	0x12345278				Value	BitString
Array	Null					ValueType	Boolean 🔹
					Ŧ		

3) Custom Execution Sequence

With the help of the software built-in sequence adapter, users can create execution sequence, realize the execution process of arbitrary logic, and meet the needs of various measurement and control automation.

- Support the creation of execution sequence, realize the execution process of arbitrary logic, and meet all kinds of measurement and control execution requirements;
- Support process control, such as branch statement (If, Switch), loop statement (For, While), parallel statement (Parallel);
- > Support synchronous control, such as Wait, Notification;
- Support numerical type action steps (Value) and protocol type action steps (Protocol);
- Support sequence nesting and complex hierarchy;
- Support scripts, which can seamlessly call .Net Framework class libraries and call third-party managed libraries to implement the execution logic;
- > Support protocol templates and step templates.

Project Explorer 4 ×		🛍 Project Explorer 🛛 📮 🗙
Search Explorer	-	Search Explorer 🔹
🚘 Step Demo Project	^	🚘 Step Demo Project 🔹
> 📑 Device		> 📑 Device
🕨 📋 Variant		🕨 🛅 Variant
👻 📴 Sequence		💌 📴 Sequence
👻 📴 Basic Steps		> 🎦 Basic Steps
> 📴 If Testing		👻 📴 Integrative Testing
> 📴 For Testing		Case1-Send Request and Recv
> 🎦 While Testing		Case2-Send Request and Recv
> 🎦 Switch Testing		Case3-Send Request and Recv
🕨 📴 Parallel Testing		Case4-Sequence + Judgment O
> 🎦 Notification Testing		Case5-Avalanche
ActionValue Testing		Case6-Sequence + Insert Upload
> 🍃 ActionProtocol Testing		Case7-Muti Socket Parallel Testi
> 🎦 Integrative Testing		Case8-Calculating and Determi
🐻 Schema		Case9-Protocol Convertion
		Case10-Continuous Testing of
		🐻 Schema

The software has a built-in sequence editor. Users can easily create and edit various types of sequence steps.

🗄 Basic Steps 🗙		▼ ×	🔆 ToolBox	щ×
Name	Description		Search ToolBox	- E -
👻 📴 Basic Steps		_		
> 🎦 If Testing			😳 Properties	щ×
👻 🎦 For Testing			(Id)	4AAF18E0-BDE8
✓ F ₂ For(i=0;i<3;i++)			(Name)	Parallel(All)
🛛 Wait500ms		=	Active	V
For(i=0;i <int1;i++)< p=""></int1;i++)<>			Category	
Hile Testing			Description	
> 📴 Switch Testing			Loggable	V
Parallel Testing			ParallelMode	All
Parallel(All)			Socket	-1
 Barallel(Any) Barallel(Specific) 		-	Timeout	-1

4) Custom User Interface

With the help of the built-in screen adapter in the software, users can create pictures, use the controls and shape templates of the picture toolbox to realize arbitrary user interface and meet the needs of various measurement and control interfaces.

🔒 Project Explorer	ųх
Search Explorer	-
🤷 Schema Demo Project	^
 Device Variant Sequence Schema MainSchema WaveSchema MeterSchema ActionSchema 	

Software built-in schema editor, users can easily create and edit the schema, realize the UI logic.

- Support the creation of user interface, using toolbox controls and shape templates, to achieve arbitrary user interface and to meet the needs of various measurement and control interfaces;
- Support property data binding, which can establish the relationship between the property and variable of UI elements;
- Support event scripts, which can seamlessly call .Net Framework class libraries and call third-party managed libraries to implement the UI logic;
- Support dynamic action, which can establish the relationship between UI elements action (movement, rotation, size) and variables;
- > Support control templates and shape templates.

4) Build Application

Users can create runtime application programs after the completion of the development of the measurement and control program. They can customize the software name, title, copyright, help file, startup image, about image and other software information to meet the deployment requirements of various measurement and control programs.

🗟 Application Bui	lder	23
Name:		-
Title:		
Copyright:		
Help File:		Browse
Splash Image:		Browse
About Image:		Browse
Output Location:		Browse
	ОК	Cancel

1.3 System Requirements

Supported Operating System:

- ▶ Windows Vista SP2 (x86 和 x64)
- ▶ Windows 7 SP1 (x86 和 x64)
- ▶ Windows 8 (x86 和 x64)

- ▶ Windows 8.1 (x86 和 x64)
- ▶ Windows Server 2008 SP2 (x86 和 x64)
- ➢ Windows Server 2008 R2 SP1 (x64)
- ▶ Windows Server 2012 (x64)
- ▶ Windows Server 2012 R2 (x64)
- ▶ Windows 10 (x86 和 x64)

Hardware Requirements:

- > Recommended minimum requirements: 1 GHz or faster, 1 GB RAM or larger
- ➢ Minimum disk space: 200 MB

Essential Components:

> Microsoft .NET Framework 4.6

1.4 Product Licensing

This product is licensed by hardware encryption lock.

Permission Rules:

- > An encryption lock can only authorize one computer at a time.
- > Authorized computers can run multiple instances of the product at the same time.
- > Encryption locks do not support virtual machine authorization.

1.5 Product Support

If you encounter problems in using this software or want to get product support information, you can contact us through our website, e-mail, etc.

- Company website:<u>www.geshe.com</u>
- > E-mail:support@geshe.com
- ▶ QQ: 979464

2. Quick Start

2.1 Installation

Welcome to install Geshe MC Master!

Step 1 - Ensure computer support for Geshe MC Master

Before starting installation, please check the system requirements in Section 1.3 to see if the computer system supports Geshe MC Master.

Step 2 - Download Geshe MC Master

Next, download the installation file of Geshe MC Master from the official website www.geshe.com.

Step 3 - Execute the installation file

Next, run Geshe MC Master Installation File for installation. Installer installs the following programs in turn:

- Microsoft .Net Framework 4.6 (Skips if installed)
- ≻ Geshe MC Master

Step 4 - Start using

After the installation of Geshe MC Master, click the "Start to Use" button and start using Gussie Master to develop.

2.2 Login

Before using Geshe MC Master, you need to log in to the account. The login interface after the software starts is shown in the following figure.

😵 Geshe Measurement and Control Master		X
Name: Administrator Password:		
Login		

The initial account list built in the software is as follows. Different accounts have different operation rights.

User Name	Password	Description			
Administrator	(None)	Administrator, with all rights.			
Developer	(None)	Developer, with all rights except "user management".			
Operator	(None)	Operator, only project operation permission.			

Note: The letters of user names are case sensitive, for example, the first letter of Administrator is capital A.

2.3 User Interface

2.3.1 Main Window

The main interface of Geshe MC Master is shown in the following figure. The top left corner is the "menu" button, which can pop up the application menu, and the next is the toolbar, view area, edit area and status bar.

2.3.2 Application Menu

T	New Project Ctrl+N	Recent Projects
Ê	Open Project Ctrl+O	Variants.en.fbp G:\GSLabs\GS1501\Bin\Examples\Ba Steps.en.fbp
	Close	G:\GSLabs\GS1501\Bin\Examples\Ba
		Schemas.en.fbp
	Save Ctrl+S	
E	Save As	
P	Save All Ctrl+Shift+S	
<u>نې</u>	Settings	
3	Help F1	
	About	
×	Exit Alt+F4	

Menu Item	Shortcut Key	Function		
New Project	Ctrl+N	Create a new project and establish the project environment.		
Open Project	Ctrl+0	Open a project and establish the project environment.		
Close Close the current		Close the currently active project.		
Save	Ctrl+S	Save the currently active item.		
Save As		Save the currently activated project to the specified path.		
Save All	Ctrl+Shift+S	Save all currently open items.		
Settings		Configure system.		
Help	F1	User help.		
About		Display the copyright, version and registration information of the software.		
Exit	Alt+F4	Exit the system.		

2.3.3 Toolbar

Home

The home toolbar is the main toolbar for user operation, which contains the basic command button and the command button currently activating the editor.

	Home	View	Tools	Help	la 🧏 Administrator 🔹
(U) Run	Add Save	Paste	Cut Copy Delete	Undo Redo	
Mode		Ed	it		

Command	Function			
Run/Design	Switch to run state or design state.			
Add	The submenu contains entries that can be added to the current edit status.			
Collapse toolbar (top right button 1)	Display or fold toolbar.			
Login user (second button in upper right corner)	Menu for login user.			

View

Command	Function		
Project Explorer	Open Project Explorer		
Data Explorer	Open Data Explorer		
User Explorer	Open User Explorer		
Toolbox	Open Toolbox		
Properties	Open Properties View		
Log	Open Log View		
Change Theme	Change Theme		
Reset perspectives	Reset window arrangement as defaults		
Pin Top	Pin MainWindow Top		
Full Screen	Full screen display		

 \odot 2019 Shanghai Geshe Information Technology Co., Ltd.

Tools

	Home	View	Tools	Help			a 🙎 Administrator 🝷
Calculator	CheckSum	CRC CRC	DES HA	ASH Base64	ASCII	UTF	
	Ca	alculato	r		List	Converter	

Command	Function
Calculator	Run the calculator of the windows system.
Checksum	Run Checksum Calculator.
CRC	Run CRC Calculator.
DES	Run DES Calculator.
Hash	Run Hash Calculator.
Base64	Run Base64 Calculator.
ASCII Checklist	Run ASCII Checklist.
Unicode Converter	Run Unicode Converter.

2.3.4 Editor Area

Editorial area can be used to edit project entries in the design state, such as sequence, variable, screen, etc. In the running state, it can be used to display project running data, running state and user interaction.

In the design state, when the item item item to be edited is opened, the corresponding editor is displayed in the editing area, the corresponding tool command button is displayed in the toolbar on the home page, the corresponding template is displayed in the toolbox, and the corresponding attribute set is displayed in the attribute view. As shown in the following figure, a screen is opened for editing. Many screen editing command buttons are added to the home toolbar. The toolbox loads the recently edited screen element template, and the attribute view loads the attribute set of the currently selected screen element.

In the running state, when the item item item to be displayed is opened, the corresponding page is displayed in the editing area, and the corresponding tool command button is displayed in the toolbar of the home page. Run a screen as shown in the following figure.

2.4 Create a Data Acquisition and Monitoring Project

A thermocouple acquisition module adopts Modbus RTU communication protocol, in which read temperature command is 03 command, address is 0000, temperature value is 16 bit signed integer.

This project demonstrates the reading temperature, then saves the acquisition time and temperature data into the text file variable "temperature data", and finally displays the temperature changing process with time by using the curve chart.

2.4.1 Step 1 - New Project

Start Geshe MC Master, select "New Project" from the menu in the upper left corner, then fill in the project name "Data Acquisition and Monitoring Demonstration Project" in the pop-up "New Project" dialog box, and then click "Browse..." Button, select the save path and fill in the project file name "Data Acquisition and Monitoring Demonstration Project", and finally click the "OK" button.

🔷 New Proje	ct				X
Name:	SCADA Temperature				
Author:			Version:		
Encoding:	Unicode (UTF-8)	-	Script:	CSharp	-
Description:					
References:					🕒 💥
	Name	l	ocation		
Startup:	2				-
Location:	G:\SCADA.fbp				Browse
				OK	Cancel

2.4.2 Step 2 - Add Serial Port Device

Select the "Device and Interface" node in the Project Manager, then click the right mouse button, and select "New Device..." in the pop-up menu.

🔒 Project Explorer					×
Search Explorer					-
🚘 SCADA Temperature					
Device		New De	vice		
B Sequence	B Sequence				
🐻 Schema					

In the new device dialog box, select "Serial Port" and click "OK".

New Device			X
General Type			
Serial Port TCP Client TCP Server			
UDP UDP			
Visa Type			
			51
OK	C	ancel	

Pop up the device properties dialog box, fill in the "Nname" and other device parameters, and finally click the "OK" button. Among them, "device name" is the identification of the device, which can be any string. The device name must be used to refer to the device.

🖗 Device - S	🖗 Device - Serial Port 🛛 🕅				
Name:	COM				
Port:	COM2	Ŧ	Stop Bits:	1	-
Baud Rate:	9600	•	Parity:	None	-
Data Bits:	8	•	Handshake:	None	-
Description:	COM2 9600,8,1,N				
OK Cancel					

2.4.3 Step 3 - Add Sequence

Select the sequence node in the project explorer, click the right mouse button, and select New Sequence in the pop-up menu.

Pop up the new sequence dialog box, fill in the "Name" and click "OK".

🗄 New	Sequence	23
Name:	Collect Temperature Data	
	OK Cancel	
	OK Cancel	

Select the newly created "Collect Temperature Data" node in the Project Explorer, then double-click the left mouse button, or right mouse button, and select "Edit" in the pop-up menu. Open the Sequence Editing page.

On the " Collect Temperature Data " editing page, select the "Collect Temperature

Data" node, click the right mouse button, select "Add - > While" in the pop-up menu, add the While type step, set the condition parameter ConditionExpression to True, and perform the acquisition task indefinitely.

Next, add the send command, select the "While" node, click the right mouse button, select "Add - > Protocol" in the pop-up menu, add the protocol type step, and then in the property panel, modify the step name "(Name) to"DA.request", set the TransceiveMode to Send, indicating active sending, device property to select the device named "COM".

🗄 Collect Temperature Data 🗙		▼ ×		🔆 ToolBox	д	LХ
Name	Description		5	Search ToolBox	-	-
 Collect Temperature Data While 		*				
🖓 DA.request				😳 Properties		ιx
				(Id)	21A15D82-B8	. 🔺
				(Name)	DA.request	
				Active	\checkmark	
				ByteInterval	0	≡
				Category		
				Description		
				Device	COM	
				FrameInterval	0	
		-		LimitExpres		-

Next, edit the protocol data of the acquisition command, selects the "DA.request" node, click the "Protocol" button in the toolbar, open the protocol editing interface,

click the right mouse button, and chooses "Add - > Protocol Field" in the pop-up menu, and add protocol fields in turn by pressing the following property table.

(Name)	(Type)	Constant	DataType	Endian	Length	Value
Address	General		BitString	LittleEndian	8	0x00
FunctionCode	General	\checkmark	BitString	LittleEndian	8	0x03
StartAddress	General	\checkmark	BitString	BigEndian	16	0x0000
RegisterCount	General		BitString	BigEndian	16	0x0001
CS	Computable	\checkmark	BitString	LittleEndian	16	0x0000

Among them, the parameter configuration of the check code is as follows.

Property	Value	Description
Algorithm	CRC16MODBUS	Algorithm for Computing
Priority	1	Calculating priority, useful when there are
		multiple computational fields.
Location	Back	Represent a computational field after the
		data that needs to be computed.
StartPosition	0	Beginning calculation byte ordinal number
EndPosition	-1	End calculation byte ordinal number, -1
		means calculation before the field.

e C	🔁 Collect Temperature Data 🗙 📃 DA.request.Protocol 🗙 🚽			• ×	🔆 ToolBox		щ×		
Name		Туре	Data Type	Length	Value		Search ToolBo	x ·	- 📑
=	Address	General	BitString	8	0x00	•			·
=	FunctionCode	General	BitString	8	0x03				
=	StartAddress	General	BitString	16	0x0000				
=	RegisterCount	General	BitString	16	0x0001		23 Properties		
- -	CS	Compu	BitString	16	0x0000		237 Properties		Ť ^
							(Name)	Address	_
							(Type)	General	
							Constant		
							DataType	BitString	=
							Description	1	
							Endian	LittleEndian	
							Format		
						-	Length	8	-

Next, add the receive command, select the "While" node, click the right mouse button, select "Add - > Protocol" in the pop-up menu, and then in the property panel, modify the step name "(Name)" to "DA.response", and set the TransceiveMode to Receive, which means receive. Device property chooses the device named "COM".

Next, edit the protocol data that receives the data acquisition command, select the

"DA.response" node, click the "Protocol" button in the toolbar, open the protocol editing interface, click the right mouse button, select "Add - > Protocol Field" in the pop-up menu, and then add the protocol field according to the following property table.

(Name)	(Type)	Constant	DataType	Endian	Length	Value
Address	General		BitString	LittleEndian	8	0x00
FunctionCode	General	\checkmark	BitString	LittleEndian	8	0x03
Bytes	General	\checkmark	BitString	LittleEndian	8	0x02
Temperature	General		Int16	BigEndian	16	0
CS	Computable	\checkmark	BitString	LittleEndian	16	0x0000

Among them, the parameter configuration of the check code is as follows.

Algorithm	Priority	Location	StartPosition	EndPosition
CRC16MODBUS	1	Back	0	-1

2.4.4 Step 4 - Add Variants

Select the "Variant" node in the Project Explorer, then right-click the mouse, and select "New Variant Container..." in the pop-up menu.

💼 P	roject Explore	er			щ	х
Search Explorer						*
🚘 SCADA Temperature						^
~ 🖪	Device					
~ 8	Sequence	Î.	New Varia Paste	a <mark>nt Containe</mark> Ctrl+V	r	
G	Schema					

Pop up the new variant container dialog box, fill in the "Name" and click "OK".

ariants		
	ОК	Cancel
	ariants	ariants OK

Select the newly created "Variants" node in the Project Explorer, then double-click the left mouse button, or right mouse button, and select "Edit" in the pop-up menu. Open the variant editing page.

On the editing page of "Variants", select the node of "Variants", right-click the mouse, and select "Add - > Extended Variant..." in the pop-up menu.

In the New Variant dialog box, select File Variant and click OK.

🤣 New Variant			X
Channel Type			
Expression Variant			
Storage Type			
File Variant Database Variant			
ОК	C	ancel	

Next, select the newly created text file variant, and in the property panel, modify the property values according to the following property table in turn.

Property	Value	Description
(Name)	TemperatureData	Variant name
Capacity	10	Variant cache capacity, the higher the acquisition speed, the larger the cache.

Directory	D:\Temp	Directory of file storage
FileName	TemperatureData.txt	Filename

Next, select the "TemperatureData" node, click the right mouse button, select "Add - > Variant" in the pop-up menu, add two variables in succession, named "Time" and "Temperature", in the attribute panel, modify the attribute values according to the following attribute table in turn.

Property	Value	Description
(Name)	Time	
Capacity	10	
ValueType	DateTime	

Property	Value	Description
(Name)	Temperature	
Capacity	10	
ValueType	Int16	

🗌 Variants 🗙				-	x	🔆 ToolBox	щ×
Name	Value Type	Value	Format	D		Search ToolBox	- E -
👻 🧧 Variants	Null				•	-	
👻 📊 TemperatureData	Null						
ime 🤣	DateTime	1/1/0				E Dronartion	
🥔 Temperature	Int16	0				Sa Properties	Ť ^
itemperaturePoint 🦪	String			Pr		(Name)	Time
	0					Capacity	10
						Description	
						Format	
						Value	1/1/0001 12:00
						ValueType	DateTime

Text file type variant, when all its sub-variables have changed, forms a record and saves it to the file. The temperature data in this example, after each acquisition, can generate a record by assigning the acquisition time and temperature value to "Time" and "Temperature" variants respectively through script.

2.4.5 Step 5 - Use Scripts to Associate Sequence Data with Variables

The temperature data collected in the sequence can be assigned to the variants in the variant table by script, and then the collected data and variable values can be correlated. The script types supported by the software system are C#, Visual Basic and Python, which can be set in the project properties. This example is demonstrated with C# script.

On the "Collect Temperature Data" sequence editing page, select the "DA.response"

Collect Temperature Data × ① DA.response.Script × 👻	×	🗞 ToolBox		д	x
1 // Namespace 2 using System;		Search ToolBox		-	•
<pre>3 using FlexBench; 4 using ElexBench Scripting;</pre>		👔 Licenses		~	
<pre>using FlexBench.Sequence;</pre>		A ASCII		^	
7 /// Script Class		00000000 0	00	N	≡
8 ///		00000001 1	01	S	
10 ₽{		00000010 2	02	STX	
<pre>11 // Script Context 12 public ScriptContext Context { get: set: }</pre>		00000011 3	03	EIX	•
13		Properties		д	×
14 //	•				

node and click the "Script" button in the toolbar to open the script editing page.

In the open script editing page, the script code of the "DA.response" step is displayed. Below is the step script template for C #.

```
// Namespace
using System;
using FlexBench;
using FlexBench. Scripting;
/// Script Class
public class Step_EDA28E6CB78849D799ECB180C2C31A05
{
  // Script Context
  public ScriptContext Context { get; set; }
  // Execute before execution of the step
  // Parameters: context - Step runtime context
                 step - current executing step
  // Return: Temporarily undefined
  public Int32 BeginExecute (FlexBench. Sequence. IStepContext context,
      FlexBench. Sequence. IStep step)
  {
    return 0;
  }
  // Execute after execution of the step
  // Parameters: context -Step runtime context
                 step -current executing step
  11
 // Return: Temporarily undefined
  public Int32 EndExecute(FlexBench. Sequence. IStepContext context,
```

}

```
FlexBench.Sequence.IStep step)
{
  return 0;
}
```

Next, in the EndExecute function, the collected data is extracted and assigned to the specified variants.

```
public Int32 EndExecute(FlexBench. Sequence. IStepContext context,
    FlexBench. Sequence. IStep step)
{
    if (step. Result. Status == (int) FlexBench. Sequence. ResultStatus. Passed)
    {
        // Extract the collected temperature values, where the Visible = True values of
        all protocol fields are stored in the Data Fields container.
        Int16 temperature = (Int16) step. Result. DataFields[0]. Value;
        DateTime time = DateTime.Now;
        // Set the variable value of the variable table, which is a Variants container,
        accessed by path.
        context. Variants["Variants/TemperatureData/Time"] = time;
        context. Variants["Variants/TemperatureData/Temperature"] = temperature;
    }
    return 0;
}
```

So far, the function of collecting and saving temperature data has been completed, and the data format saved is shown in the following figure.

TemperatureData-190328132151 - Notepad	
File Edit Format View Help	
Time Temperature 3/28/2019 1:22:02 PM 28	*
3/28/2019 1:22:03 PM 97	
3/28/2019 1:22:04 PM 35	
3/28/2019 1:22:04 PM 56 3/28/2019 1:22:05 PM 9	
3/28/2019 1:22:05 PM 30	
3/28/2019 1:22:06 PM 68	
•	

2.4.6 Step 6 - Add Schema

Select the "Schema" node in the Project Explorer, then click the right mouse button, and select "New Schema..." in the pop-up menu.

Project Explorer 4 ×
Search Explorer 🔹
🚘 SCADA Temperature 🔹
 Device COM Variant Variants Sequence Collect Temperature Data While
Schema New Schema Paste Ctrl+V

Pop up the new schema dialog box, fill in the "Name" and click "OK".

🖹 New	Schema		23
Name:	TemperatureCurve		
		ОК	Cancel

Select the newly created "TemperatureCurve" node in the Project Explorer, then double-click the left mouse button, or right mouse button, and select "Edit" in the popup menu. Open the schema editing page.

Click on the menu in the upper right corner of the toolbox and select "Open Mould File..." from the pop-up menu. In the Controls directory, select the template file "ChartsAndGauges.fbschema" and click "Open"; then use the mouse to select the "Chart2DLine" entry in the toolbox and create a curve display control in the schema.

Next, in the property panel, modify the property values of the control according to the following property tables in turn.

Property	Value	Description
AxisXScaleType	DateTime	X-axis data type
AxisXTitle	Time	X-axis title
AxisYTitle	Temperature	Y-axis title
Title	Temperature Curve	Title
DataEntry1		Data source 1, By binding data methods and
		associating variables.

Next, we deal with the problem of data binding. The type of data source of the curve control is a string in the format of "<serie name>, <X value>, <Y value>", where X value is date format or digital format, and Y value is digital format. For example, to display the point of a curve named "Temperature Curve" (2019/1/1 10:10:10, 123), the value of the data source is "Temperature Curve, 2019/1/1 10:10:10, 123".

Therefore, to create a new string type variant to provide data for the curve display control, in the "Variants" edit page, select the "Variants" node, click the right mouse button, select "Add - > Variant" in the pop-up menu, named "TemperaturePoint", in the property panel, in turn, according to the following property table to modify the property value.

Property	Value	Description
(Name)	TemperaturePoint	
Capacity	10	
ValueType	String	

Next, the "TemperaturePoint" variant is assigned in the EndExecute function of the script code of the "DA.response" step.

```
public Int32 EndExecute(FlexBench. Sequence. IStepContext context,
     FlexBench. Sequence. IStep step)
  {
    if (step. Result. Status == (int) FlexBench. Sequence. ResultStatus. Passed)
      // Extract the collected temperature values, where the Visible = True values of
all protocol fields are stored in the Data Fields container.
      Int16 temperature = (Int16)step.Result.DataFields[0].Value;
      DateTime time = DateTime.Now;
      // Set the variable value of the variable table, which is a Variants container,
accessed by path.
      context.Variants["Variants/TemperatureData/Time"] = time;
      context.Variants["Variants/TemperatureData/Temperature"] = temperature;
      // Set TemperaturePoint variable
      string temperaturePoint = "Temperature Curve," + time.ToString() + "," +
temperature. ToString();
      context.Variants["Variants/TemperaturePoint"] = temperaturePoint;
   }
   return 0;
  }
```

Next, select the control in the "TemperatureCurve" schema editor, select "DataEntryl" in the property panel, click the "Create Data Binding" button in the property toolbar, pop up the data binding dialog box, select the "Data Provider" for the binding type, then click the "Add Variant" button, and select the "TemperaturePoint" variant in the pop-up variant selection dialog box. Click OK.

📄 Data Binding	9			X
Property:	DataEntry1			
Binding Type:	Data Provider			•
⊂ Variant				_
Variant Nam	e: Variants/TemperaturePoint	6	Ð 🗙	
	ОК	С	ancel	

So far, the temperature curve is completed.

3. FAQ